
Page 1

Eduardo Ballina

Fernando Gonzalez

Invensys Systems, Inc.

May 2004

InTouch - Industrial Application Server

Migration and Coexistence

Planning Guide

Page 2

Table of Contents
1. White Paper Summary ..3
2. Benefits of Using the Industrial Application Server ...3
3. Introduction...4
4. Basic Concepts..4

4.1. Connectivity ...4
4.2. Alarms ..5

4.3. History..5
5. Coexistence with Industrial Application Server..6
6. Designing Applications that are Easy to Migrate..8

6.1. Structure of a Typical "Classic" InTouch Application8
6.1.1. Tag Server Architecture ...10
6.1.2. The Tagname Dictionary in a Classic Application12

7. Migration to Industrial Application Server ...13
7.1. Considerations when Migrating an InTouch Application14
7.2. Workflow for Migrating an InTouch Application15

7.2.1. Gather Information about the Process and Identify Field
Devices and Functional Requirements...................................17

7.2.2. Export the Tagname Database ...17
7.2.3. Create a .txt File of the Entire Application17
7.2.4. Save a Copy of Group.def and DDE.cfg as Text Files...........17
7.2.5. Modify the Original InTouch Application18
7.2.6. Define Naming Conventions..19
7.2.7. Define the Area Model...20
7.2.8. Plan Templates...20
7.2.9. Create a New InTouch Application..21
7.2.10. Define the Security Model - Users, Roles, Groups22
7.2.11. Move Instances to Security Groups23
7.2.12. Deploy and Test in Single/Staging Platform (if feasible)23
7.2.13. Define the Deployment Model and Deploy and Test All

Platforms ..23
7.3. Leveraging InTouch 9.0 SmartSymbols...24

8. References...24
9. Summary...24

Page 3

1. White Paper Summary
This white paper was written to help existing InTouch customers in planning and
designing Industrial Application Server (IAS) applications that must work side-by-
side with applications built with FactorySuite 2000 or that must use existing
applications as a starting point. Thorough planning is an important part of the
migration process, whether you are ready to implement IAS today or in the future.

2. Benefits of Using the Industrial Application
Server

Industrial Application Server was developed primarily to help current InTouch
customers with the development, management, and maintenance of larger and more
complex supervisory systems. As a result, the benefits of using the Industrial
Application Server with InTouch include:

• Improved development productivity

• Remote system maintenance

• One single, global namespace for tag access

• Common system services for alarming, security, history, events, scripting,
communications, and documentation

• Easier system maintenance and change management

Industrial Application Server incorporates many of the functions contained in a
single node HMI application and simplifies them from one software entity to a series
of componentized objects. This allows you to scale a system very effectively from a
single computer to hundreds of nodes without a high development and maintenance
burden. The Industrial Application Server is truly revolutionary and sets the standard
for the industry.

Page 4

3. Introduction
If you are a current FactorySuite user, you very likely already have a system in place
that works to your satisfaction. However, you may be considering an expansion or
addition to your site using the latest technology: FactorySuite A2 and the Industrial
Application Server.

Extending an existing FactorySuite 2000 application can be approached in a number
of ways:

• You may decide to implement the extension using FactorySuite A2 components
and do so with a "classic" approach, but will prepare for future migration to the
Industrial Application Server.

• You may choose to introduce Industrial Application Server in the new portion of
the project and simply integrate to the existing system while keeping the HMI
nodes "as is."

• You may elect to migrate your existing FactorySuite 2000 application to the
Industrial Application Server.

This document provides basic recommendations for all three choices: co-existence,
designing today for easy future migration, and migration to Industrial Application
Server.

4. Basic Concepts
In order to better understand the possibilities, you should review certain basic
concepts about traditional FactorySuite 2000 InTouch applications, as well as
Industrial Application Server.

4.1. Connectivity
As always, as we at Wonderware expand our options in connectivity, we continue
to support protocols that our users have embraced for their existing applications.
Industrial Application Server can access the very same device data leveraged by your
existing InTouch nodes by using client ApplicationObjects.

• DDESuiteLinkClient object

The DDESuiteLinkClient object provides IAS connectivity to DDE and
SuiteLink data from sources such as I/O Servers, InTouch, InControl,
IndustrialSQL Server, Microsoft Excel and any other source that supports
DDE or SuiteLink. This object is hosted by an AppEngine running on an
ApplicationObject Server node.

• InTouchProxy object

The InTouchProxy object is an integration object of particular interest in a
coexistence scenario. This is a specialized client object, similar to the
DDESuiteLinkClient object. However, this proxy object provides the ability to
browse the tagname dictionary of an existing InTouch application, so that you
can select the tags to be exposed to the Industrial Application Server.

Page 5

• OPCClient object

If you are currently using OPC Servers along with OPCLink, you will want to
use the Industrial Application Server OPCClient object. This client object
provides IAS connectivity to OPC 2.0x DA Servers. This object is also hosted
by an AppEngine running on an ApplicationObject Server node.

Note The newly introduced Message Exchange protocol is used for communications
between IAS Platforms. It is not used for communications with data servers. Thus, it
is not a replacement for DDE, SuiteLink, or OPC for device integration
communications. Therefore, your existing device interfaces will work with any
FactorySuite A2 product.

4.2. Alarms
InTouch and InTouchView nodes that are part of an Industrial Application Server
based system can access alarms from existing FactorySuite InTouch nodes (version
7.11 or higher), in addition to alarms coming from the Industrial Application Server
itself. This is because the same distributed alarming system introduced with InTouch
7.11 is also part of Industrial Application Server.

Note Nodes running InTouch 7.1 or earlier must be upgraded to InTouch 7.11 or
later in order to be able to interact with the new distributed alarm system.

• Alarm Logger

The Alarm Logger allows you to store alarms from alarm providers, which
include both InTouch 7.11 nodes and the Industrial Application Server. You can
configure alarm display objects on any visualization node in the plant to display
all alarms.

4.3. History
Existing InTouch nodes can continue to use the InTouch historian and the InTouch
histortical trend object. However, IndustrialSQL Server presents new opportunities.

IndustrialSQL Server is the historian for Industrial Application Server. Data from
your existing FactorySuite 2000 nodes can be collected and made available by the
same IndustrialSQL Server that performs the historization work for an Industrial
Application Server.

Page 6

5. Coexistence with Industrial Application
Server

This section provides information on how a new system based on Industrial
Application Server can be integrated to an existing FactorySuite 2000 system. Two
possible scenarios are discussed.

Scenario 1: The FactorySuite 2000 application remains unchanged.

In some cases, it may be desirable to upgrade an existing system to FactorySuite A2
in order to leverage the benefits of Industrial Application Server. However, there will
be cases where you may decide to keep the existing system "as is" for a number of
reasons. For example, perhaps the system has already been certified, or the system
already complies with all your requirements.

For this scenario:

• Use the corresponding InTouchProxy object and other client objects in the IAS
plant model to connect to the existing data sources.

• Use Alarm Logger to capture alarms from both IAS and legacy systems.

• Use IndustrialSQL Server to collect data history from both legacy and new
systems.

Page 7

Scenario 2: FactorySuite 2000 nodes are upgraded to InTouch 8.0 or later, but
not migrated to IAS.

You may be interested in upgrading the existing InTouch nodes to the latest version
of InTouch (8.0 or later) without migrating the existing application to an IAS model.
You want to bring data from the new IAS expansion to new windows in your
existing InTouch nodes.

For this scenario:

• Upgrade existing InTouch nodes to InTouch 8.0 or later.

• If IAS data needs to be displayed at the legacy side, install a bootstrap and
deploy a Platform at every existing InTouch node.

You can now create new InTouch windows that access data from the objects in the
IAS Galaxy. You do not need to create new InTouch tags in order to access data
from IAS. Data is sent to InTouch nodes via remote tags that reference the built-in
"Galaxy" access name.

This configuration scenario allows you to:

• Keep all of your visualization nodes running the same version of InTouch.

• Browse the entire Galaxy namespace from any InTouch node.

• Use existing nodes to access data from the additional IAS nodes, as well as use
new visualization nodes to get data from legacy ones.

• Leverage the Message Exchange protocol for communications across all nodes.

• Consolidate user accounts into a single security system.

Page 8

6. Designing Applications that are Easy to
Migrate

If you are already implementing a solution with a FactorySuite "classic" approach,
there are a number of recommended practices for you to consider. These
recommendations apply to any InTouch system today, regardless of whether or not
the application will be eventually migrated to an Industrial Application Server
model. However, by following these suggestions, you will lay a foundation for an
easy migration in the future.

Before reviewing the list of recommendations, you should analyze the way "classic"
applications are currently implemented.

6.1. Structure of a Typical "Classic" InTouch
Application

A traditional single-node InTouch application consists primarily of a number of
windows, scripts of various types, different types of tags, alarming, historization, and
security. As illustrated in the following diagram, the three main building blocks of an
application are tags, windows, and scripts. Historization and alarming are closely
associated with tag definitions.

Page 9

From a functionality point of view, you can make a distinction between tags and
scripts used for visualization only and those used for supervisory control.

Visualization tags are tags used to perform graphic animations, window
manipulation, and window navigation. Visualization tags are mostly memory tags.
Indirect tags are a good example of tags used for visualization purposes.

Visualization scripts are scripts that do not manipulate process data but instead
process information for the purpose of handling the graphical aspects of an InTouch
application.

Common tags are primarily I/O tags that are used to connect the application to field
devices and other sources of external data.

Supervisory scripts are scripts that perform supervisory control functions such as
process related calculations, monitoring and managing communications, writing data
to field devices, and so on.

Page 10

6.1.1. Tag Server Architecture
If you have implemented an InTouch based system in a distributed environment, you
probably are using a tag server architecture. In this type of topology, visualization
and supervisory control functions are split between the tag server and view nodes. A
tag server node hosts an InTouch application with a tagname dictionary that holds
common tags used by all InTouch applications in the system. This tag server
application also runs supervisory control scripts, connects to the I/O data sources,
and performs the historical logging and alarming functions. View nodes host an
InTouch application that focuses primarily on the visualization aspect of the solution.
Local tags and scripts in a view node are mostly those required for visualization
only. Common tags, which reside at the tag server, are accessed by client nodes
using remote tag references.

The following diagram illustrates the tag server topology and shows how this
functionality is distributed in a system:

This tag server topology is a recommended architecture for an existing distributed
system implemented using FactorySuite in a "classic" approach. The separation of
functionality will ease future migration to Industrial Application Server.

Page 11

In a multi-node IAS application, a typical topology would be as follows:

Page 12

6.1.2. The Tagname Dictionary in a Classic Application
An important point to consider is the nature of the InTouch tagname dictionary. In
InTouch applications, tags are part of a flat namespace. In the Industrial Application
Server, the plant is modeled in a hierarchical way. The attributes of an object (which
in a way are the equivalent of InTouch tags) maintain a relationship with the object
they belong to. This provides a more true-to-life representation. Keeping all aspects
of an entity grouped together (tags, scripts, alarming configuration, history
configuration, and more) provides many advantages.

Following consistent naming conventions that allow easy identification of InTouch
tags that relate to an entity (that is, to a valve, motor, pump, and so on), will go a
long way in facilitating migration to Industrial Application Server in the future. You
should first identify all devices, areas, and other logical groupings in your
application and then apply naming conventions and standards established by your
company in consistency with IAS naming. Not only is it recommended that the
naming be consistent, but also that the naming reflects a hierarchy.

For example, an InTouch application uses the following InTouch tag:

HiddenValley_Well5_Pump_Pressure

This tag could later point to the following object attribute in an IAS model:

HiddenValley.Well5.Pump.Pressure

In the IAS model, HiddenValley is an Area, Well5 is a sub-Area, Pump is an object
under that sub-Area, and Pressure is an attribute of the Pump object.

Use InTouch supertags. These are one of the tools you have in InTouch that can help
you bring some structure to tagnames.

In summary, to create an InTouch application today that you can easily migrate to
IAS in the future:

• Identify areas and devices in your application.

• Adopt and follow tag naming standards.

• Use supertags.

• Use tag server architecture and remote tag references.

• Split visualization and supervisory control functionality.

Page 13

7. Migration to Industrial Application Server
Converting from an InTouch application to Industrial Application Server can provide
significant benefits. However, you need to first determine whether the best approach
would be to convert an existing InTouch application into an Industrial Application
Server model or whether some form of coexistence is the right balance. Migration
costs may be significant for some projects in terms of the engineering effort, but the
benefits will outweigh the cost in most cases. Remember that the Industrial
Application Server uses InTouch as the HMI, so complete conversion is not always
necessary to gain the benefits needed.

Migration to IAS:

• Eliminates tag limitations.

• Provides a single namespace.

• Allows distribution of loads.

• Facilitates reuse of code from one application to another.

• Adds structure to projects (using the plant model).

• Simplifies maintenance and change propagation.

• Provides enhanced communications.

• Offers centralized security features.

Transitioning from an InTouch tag dictionary to IAS automation objects will help to
optimize the new supervisory application. In the Industrial Application Server plant
model, attributes are similar to tags in InTouch. IAS ApplicationObjects inherit their
attributes from templates in an object-oriented environment, are grouped together
based on containment that reflects a plant model, and have built-in security. Also,
object attributes can be created or extended as necessary.

The second task you will need to perform when migrating to IAS is to identify and
then remove functionality no longer required by an InTouch application (for
example, certain types of scripts, tags, windows). InTouch programmers have
multiple options when implementing functionality such as security, communications,
diagnostics, or alarming in InTouch. One of the key goals of Application Server is to
reduce the amount of work (scripting) previously required to support those features.
Much of this functionality is now built into IAS or can be executed and managed by
an ApplicationObject and could therefore be removed from an InTouch application.
You will need to identify scripts, tags and animated graphical objects that perform
those functions and determine which ones are candidates for removal.

After you have decided to migrate an existing application, the next question is how
to approach the migration. You can create reusable templates, one of the strengths of
IAS, to build an object-based plant model. Since this functionality is not available in
InTouch, you may have created tag dictionaries, scripts, and windows in a way that
was appropriate for each project. The next section describes some of the
considerations to keep in mind when migrating an InTouch application.

Page 14

7.1. Considerations when Migrating an InTouch
Application

Regardless of how migration is performed, IAS programmers must handle
functionality in IAS that is similar to that in existing InTouch applications. The
process to convert an InTouch application to be used with Industrial Application
Server is as follows:

• Security

Security is pervasive in InTouch applications because it is accomplished at the
link (UI) or window level. Nearly all scripts that handle security are no longer
necessary in IAS and can be removed. There are some exceptions in which an
application may still need to check for tags such as $AccessLevel, $Operator, or
$OperatorName to perform some validation.

• Graphic Scripting

Objects in InTouch windows can have a number of scripts to trigger Action,
Animation, Visibility, or Color changes, among others. Also, it is very common
to have On Show, While Showing, or On Hide scripts. It is necessary to convert
all links to InTouch tags into remote references to instances of objects in the IAS
model. This is easier if the naming structure of object attributes follows the
InTouch tag naming structure, in which case the references (items) can easily be
changed to remote tag references pointing to IAS.

• System Error Detection

Error checking in InTouch is implemented via scripts. There are some system
tags and tools (such as Status and IOStatus) that can aid in error detection, and
functionality in the dot fields for I/O tags to monitor errors. IAS includes a vast
number of built-in attributes that can easily be extended for alarms or configured
for history.

• Device Integration

InTouch interfaces with I/O sources via access names. IAS includes
DeviceIntegration objects that interface with SuiteLink, DDE, or OPC-aware
devices. IAS also includes a proxy object to connect to existing InTouch nodes.

• History

InTouch history files are stored in a single directory specified during
development. The format for history files includes an index file (.idx) for faster
retrieval and a corresponding history file (.lgh). IAS uses IndustrialSQL Server
as the historical archive. IndustrialSQL Server 8.0 SP1 or later includes a wizard
to import InTouch history files from existing .lgh and .idx files into
IndustrialSQL Server history blocks. For more information about the
�InSQLITHist.exe� utility, see the IndustrialSQL Server documentation.

Page 15

• Alarms

InTouch and IAS rely on a common alarm sub-system based on a publish-
subscribe model. Alarms are generated by providers such as InTouch nodes or
Platforms in IAS; alarms are displayed by consumers such as the Distributed
Alarm Object (DAO) or AlarmView ActiveX control grids inside InTouch.
Since a DAO can query alarms from InTouch or IAS, converting an alarm
window is a very simple process. If IAS alarms must be acknowledged, then the
AlarmView ActiveX Control must be used.

• SQL Access Manager, Recipe Manager, and SPC Pro

These modules are popular options for InTouch applications. While IAS does
not have base templates to replace them, it is possible to develop templates that
perform similar operations. For example, the FactorySuite A² Demo CD
includes a SQLDataAccess template. For more information on FactorySuite
integration, see the FactorySuite A² Deployment Guide.

7.2. Workflow for Migrating an InTouch Application
The FactorySuite A² Deployment Guide provides a suggested workflow when
planning a project with Industrial Application Server. The workflow diagram
presented in this section extends that workflow to include the tasks that are required
when migrating an existing InTouch application as part of the development of an
Industrial Application Server project. All processes explained in the deployment
guide are shown with a gray background in the flowchart; for more information, see
the deployment guide.

Page 16

Gather Information about the process
Identify Field Devices and Functional Requirements Backup and analyze existing InTouch app

Create txt file of entire app (File / Print)

Save copy of Group.def and dde.cfg as text files

MODIFY APPLICATION;
Tagname DB,

Access Names,
Windows,
Scripts,

Alarm Groups

Is there
structure in tag

naming?

Define Area Model

Plan Templates

Use GalaxyDump,
csv, GalaxyLoad

Create final
instances

Few/Unique instances?Many/Similar instances? Use IDE

Generate instances reflecting existing InTouch nomenclature

Generate instances with new nomenclature

Y

N

Create New InTouch application

Convert/check placeholders in all windows and scripts to RTRs or local tags

Create individual instances to validate templates

Test
OK?

N

Y

DBLoad local tags related to visualization, animation, security, window navigation

Import Windows

Import and modify scripts related to animation, navigation, security

Define Security Model - users, roles, groups

Move instances to security groups

Deploy and Test on single Platform

All links work
as desired?

Deploy and Test on single Platform (if feasible)

N

Define Deployment Model
Deploy and Test All Platforms

Y

Finish

Define Naming conventions

Export TagnameDB (DB Dump)

Note: Processes in gray are documented in
FactorySuite A² Deployment Guide

Suggested Project Workflow for Migrating an Existing InTouch Application to
FactorySuite A² With Industrial Application Server

Page 17

7.2.1. Gather Information about the Process and Identify
Field Devices and Functional Requirements

It is very important to become familiar with the existing InTouch application and
understand what it does. To facilitate this, you can:

• Backup and analyze the existing InTouch application.

• Review any additional documentation available for the project.

• Talk with the person or group that originally developed the application.

• Talk with the operators that use the application. Nobody knows the application
better than the operators that use it on a regular basis. If possible, have them
walk you through all of the windows and procedures that are part of the
supervisory system.

7.2.2. Export the Tagname Database
By using DBDump in the InTouch Application Manager, you can create a .csv file
that includes all access names, alarm groups, and tagnames defined in the
application. This file will serve as the starting point to build the Galaxy in IAS. You
may be able to identify patterns in tag naming that may suggest potential
ApplicationObjects, alarm groups that could become Areas, and access names that
may indicate the type of DeviceIntegration Objects to use.

7.2.3. Create a .txt File of the Entire Application
The file/print option in WindowMaker (InTouch 8.0 or later) allows you to send
the output to a text file instead of a printer. This file is very helpful when you are
looking for uses of a particular script function or for any other search not related to
the use of tagnames. Tagname searching is available in the Cross Reference tool in
WindowMaker.

7.2.4. Save a Copy of Group.def and DDE.cfg as Text
Files
These files are included in the directory where the InTouch application is stored.
Group.def is a text file that contains the definition of all alarm groups in the
application and their hierarchy. In many cases this hierarchy represents the Area
model to be used in IAS or at least provides you with a good starting point.

The DDE.cfg file contains details about all access names defined for the InTouch
application. Most of the information from this file is already available in the DB.csv
file that is created when the Tagname dictionary is exported into a .csv file via
DBDump.

Page 18

7.2.5. Modify the Original InTouch Application
The original InTouch application may be modified for the new project with
Industrial Application Server. The goal is to create a new InTouch application that
reuses some of the scripts and windows from the original one; therefore, the original
application should be modified by removing any unnecessary tagnames, access
names, windows, scripts, and alarm groups.

Migrating the InTouch application to an IAS-based architecture will be easier if the
original application was implemented as part of a client-server architecture, where
one InTouch node (the tag server) has all I/O definitions and associated scripts and
other InTouch nodes (the clients) have remote tag references to the server.

• Tagname DB

Most, if not all, I/O tags will be removed from the .csv file because they will
become part of the ApplicationObjects in IAS. Most memory tags, particularly
those that handle animation, operator settings, window navigation, and security,
will be reused in the InTouch application.

• Access Names

Access names define connections from InTouch to external sources (DDE and
SuiteLink servers). All access names must be removed from the application as
most of them will be implemented as DeviceIntegration (DI) objects in IAS.

• Windows

Delete any unnecessary windows. Review any window logic to determine which
tags and scripts handle the navigation. This logic can be reused in the new
InTouch application.

• Scripts

It is very important to review all of the scripts in the original application and
separate the functionality that will remain as part of the new InTouch application
from the functionality that will be implemented in IAS.

If scripts are embedded in windows, they will be more difficult to manage later.
Only the scripts that are required to be on the window itself should be placed
there; otherwise, move them to a common location and use quick functions for
repeated tasks.

When migrating scripts, determine what script functionality has been (or can be)
replaced by the infrastructure provided by IAS. This will help you identify the
tags and scripts that can be removed.

• Alarm Groups

The Group.def file and the .csv files show the area definitions and are no longer
needed in the new InTouch application for the IAS-based system.

Page 19

7.2.6. Define Naming Conventions
The second step in the workflow is to define the naming conventions for templates,
objects, and object attributes. Naming conventions should adhere to:

• Conventions that you use within your company.

• ArchestrA naming restrictions. For information on allowed names and
characters, see the IDE documentation.

For example, you might have an instance tagname of:

YY123XV456

with the following attributes:

OLS, CLS, Out, Auto, Man

The following illustration shows how the naming convention in a traditional Human-
Machine Interface (HMI) is different from the naming within ArchestrA:

HMIs

Individual Tags

ArchestrA

Object Object
Attributes

YY123XV456

YY123XV456\OLS

YY123XV456\CLS

YY123XV456\Out

YY123XV456\Auto

YY123XV456\Man

.OLS

.CLS

.Out

.Auto

.Man

For ArchestrA, references are created using this naming convention:

<objectname>.<attributename>

For example:

YY123XV456.OLS

Page 20

7.2.7. Define the Area Model
The next step of the project workflow is to define the Area model. An Area is a
logical grouping within your application that represents a portion of the layout of
your plant. In a typical plant, you would define the following Areas: Receiving
Area, Process Area, Packaging Area, and Dispatch Area. You will need to define and
document all of the Areas of your plant that will be part of your application.

Each object will need to be assigned to a particular Area. When you install the
Industrial Application Server, a single Area is created by default, called
"unassigned." Unless you specify otherwise, all object instances will be assigned to
this Area.

The following are a few tips for creating Areas:

• If you create all of your Areas first, you can easily assign an object instance to
the correct Area; otherwise, you will have to move them out of the unassigned
Area later.

• It is helpful to create a system Area to which you can assign instances of
WinPlatform and AppEngine objects. WinPlatform and AppEngine objects are
used to support communications for the application, and do not necessarily need
to belong to a plant-related Area.

• You can group alarms according to Areas.

• Areas can be nested.

When building an Area hierarchy, keep in mind that the base Area that is assigned to
a Platform determines how the underlying objects will be deployed. If a plant area
(physical location) is going to contain two computers running AutomationObject
Server Platforms, then two logical Areas will have to be created for the one physical
plant area.

One approach for creating instances of an object is to create an instance for one Area
at a time. If you use this approach, then mark the Area as the default, so that each
instance is automatically assigned to the selected Area. Before you begin to create
instances in another Area, change the default to the new Area.

A final consideration for constructing Areas is that the various Areas equate to alarm
groups. It is at the Area level that alarm displays can easily be filtered. For more
information on Areas, see the IDE documentation.

7.2.8. Plan Templates
The next step is to determine the templates that you will need. A template is an
element that contains common configuration parameters for objects that are used
multiple times within a project. Templates are instantiated to represent specific
objects within the application. Both the templates and the instances created from
them are called ApplicationObjects.

For example, you might need multiple instances of a valve within your application,
so you would create a valve template that has all of the required properties. This
allows you to define once, and reuse multiple times. If you change the template, the
changes can be propagated to the instances. You can use simple drag-and-drop
within the IDE to create instances from templates.

Page 21

The Industrial Application Server is shipped with a number of pre-defined templates
to help you create your application quickly and easily. Review these templates and
determine if any of their functionally match the requirements of the devices on your
list. If not, you can create (derive) new templates from the supplied UserDefined
template.

For your project planning, document which existing template can be used for which
objects, and what templates you will need to create yourself. For information on a
particular object template, see the Help file for that object. A child template that you
derive from a parent template can be highly customized. You can implement user-
defined attributes (UDAs), scripting, and alarm and history extensions.

Note You can use the Galaxy Dump and Load Utility to create a .csv file, which you
can then modify using a text editor and load back into the Galaxy Repository. This
allows you to make bulk edits to the configuration quickly and easily. For more
information on templates and template derivation, see the IDE documentation.

7.2.9. Create a New InTouch Application
After you have modified the original InTouch application, create a new application
and import the changes. By importing the windows and scripts, you get a chance to
review all of the visualization links and scripts that remained after you modified the
original application.

• Import windows.

Bring all of the windows into the new application; the placeholders will be
converted later.

• Use DBLoad to load local tags related to visualization, animation, security,
and window navigation.

Before performing the load, set the .csv file for the Test mode (:MODE=TEST)
in order to validate the file. For more information on DBLoad, see the InTouch
User�s Guide.

• Import and modify scripts related to animation, navigation, and security.

After you have imported all of the scripts, convert them to local tags. Revise
security related scripts to include the functionality available in InTouch 8.0 or
later. For example, rather than checking for $AccessLevel, the IsAssignedRole()
function should be used to determine what the current user is allowed to do.

• Convert/check all placeholders in all windows and scripts to remote tag
references or local tags.

At this point, enabling the object browser to point to the Galaxy Repository will
simplify the process of validating all the links. For the browser to work, the IDE
must be installed and a Platform deployed to the development node where
WindowMaker is running.

Page 22

In a client/server InTouch application, windows are already using links to
remote tag references, so migrating this type of system is easier. For this type of
application, you first need to replace the original access name used by the
window links with the built-in "Galaxy" access name that connects to the
Galaxy via the local Platform and Message Exchange. In a non-client/server
application, windows may include links to tags that no longer exist in the new
application; if so, modify these links to use remote tag references pointing to
object attributes in IAS.

Look for links that were referencing dot fields in the original application; those
dot fields must be modified to point to the proper object attribute or attribute
property in IAS. Also, make sure to use the proper syntax for the default
attribute (that is, .pv or .value) and use the #VString whenever possible. For
more information, see the FactorySuite A² Deployment Guide.

7.2.10. Define the Security Model - Users, Roles, Groups
The next step is to define the security model. The following basic concepts are
important for understanding the ArchestrA security model:

• Users

A user is each individual person that will be using the system. For example,
John Smith and Peter Perez.

• Roles

Roles define groups of users within the security system. Roles usually reflect the
type of work performed by different groups within your factory environment.
For example, Operators and Technicians.

• Permissions

Permissions determine what users are allowed to do within the system. For
example, Operate, Tune, and Configure.

• Security Groups

A security group is a logical Area to which you want to assign users and/or
roles. Security groups typically map on to Areas and reflect a physical location
of your plant. For example, you might want to assign Technicians to the Line_1
security group, but not to the Line_2 security group.

Define and document the users, roles, permissions, and security groups that you will
need in order to implement security for your factory environment. You can use users
and roles that have already been defined within the operating system security, or you
can define them within the IDE. You can also use a mixture of both types. Using
operating system users and roles facilitates deployment and makes future
maintenance easier. You will also need to determine the security settings for
writeable attributes of objects. The security options for writeable attributes consist
of: Read Only, Operate, Tune, Secured Write, Verified Write, and Configure.

Review your functional worksheet that lists the objects (and their attributes) that you
plan to create and document the setting for each one. For example, you might have
an input attribute for a valve that you want to be read-only.

Page 23

The basic steps for setting up security within the IDE are:

1. Configure the attribute security for objects. You will need to do this at the
template level.

2. Create security groups.

3. Create roles and assign them to security groups.

4. Select permissions and grant them to roles.

5. Define users and assign them to roles.

For more information on security and how to configure it, see the IDE
documentation.

7.2.11. Move Instances to Security Groups
For more information, see the ArchestrA IDE documentation.

7.2.12. Deploy and Test in Single/Staging Platform (if
feasible)
For more information, see the FactorySuite A² Deployment Guide.

7.2.13. Define the Deployment Model and Deploy and Test
All Platforms
One of the strengths of ArchestrA is the distributed environment in which it runs.
Within ArchestrA, you can deploy objects to various computers on the network. You
will need to develop a model that specifies where you will deploy certain objects.
When you actually perform the deployment, the objects will be deployed and
executed on the target computers.

Each computer that participates in your ArchestrA network will need to have a
WinPlatform object, AppEngine object, and Area object deployed to it, at a
minimum, in addition to ApplicationObjects.

The objects that you should deploy on particular Platforms and engines are a
function of the "load" of the objects. The load is based on the number of I/O points
used, the number of user-defined attributes (UDAs), and so on.

After you deploy objects, you could use the Object Viewer application to check
communications between nodes and determine if the system is running optimally.
You may find that you have a node that is executing more objects than it can easily
handle, and you will need to deploy one or more objects to another computer.

For more information on deployment, see the IDE documentation.

Page 24

7.3. Leveraging InTouch 9.0 SmartSymbols
SmartSymbol technology brings the same type of object-based development
productivity to InTouch graphics development as the Industrial Application Server
does for the control system services. SmartSymbols also simplify and synchronize
the development of InTouch graphics with IAS templates. This reduces the overall
engineering work by reducing the number of tags and scripts in InTouch. It is also
possible to dynamically set graphics references to instances at run time. Attributes in
IAS can also be browsed from the SmartSymbols Editor and IAS object instances are
generated when a smart symbol is replicated.

When migrating from an InTouch-only application to IAS, consider the advantages
of migrating the InTouch graphics to SmartSymbols. You can do this in
WindowMaker by selecting the graphic elements that you want to make into a
SmartSymbol, making them into an InTouch cell, and then generating a
SmartSymbol from the cell. The SmartSymbol Manager allows tag references in a
SmartSymbol to be linked to attributes in an IAS object template. It also allows an
object template instance to be automatically generated from a SmartSymbol and for
the object attribute references to be switched at run time using the
IOSetRemoteReference script function.

By converting InTouch tags to IAS ApplicationObjects, with associated attributes,
and InTouch graphic elements into SmartSymbols, you can fully leverage
Wonderware's ArchestrA technology today, and as FactorySuite A2 evolves.

8. References
The following documents provide additional information on how to implement the
Industrial Application Server. They can be located on the Wonderware Tech Support
Site at http://www.wonderware.com/support/

• FactorySuite A2 Deployment Guide

• InTouch User�s Guide

• ArchestrA IDE User's Guide

• InTouch 9.0 New Features User�s Guide

9. Summary
The Wonderware Industrial Application Server leverages the InTouch HMI as the
visualization component of the supervisory system. As a result, there are several
options for existing InTouch customer to integrate their current applications with the
IAS and take advantage of the power this ArchestrA architecture provides.

