

Greater flexibility for automatic control.

\%omen		อง่ง่ว่ง่า
-0000000 200	-am	
\bigcirc		
	$\theta \theta \theta \theta \theta \theta$	Oeo

Just a few examples of what the ZEN can do: Enormous added value in automating everyday facilities

■ Fan and Pump Control

Coin-operated Car Wash

The ZEN can be used to change the operating time depending on the number of coins inserted.
If a holding timer (\#) is used with holding bits (H) in self-holding programming, the remaining time will not be reset even if there are unexpected power interruptions.

Application of Bit Logic and Timer Functions

Parameter Settings
The car wash operates for 3 minutes for one coin, 6 minutes for two coins, and 9 minutes for 3 coins.

Holding Timer \#0

Set to 3 min .

Greenhouse Air Circulator Control

Application of Bit Logic and Timer Functions

Research and Development Devices

Testing Equipment

ON/OFF switching can be performed for durability and other tests in R\&D. -

Parameter Settings Time Offset Startup Time Setting TO

Time Offset Startup Time Setting T2 | T2 | \times | $H: S$ | A |
| :--- | :--- | :--- | :--- |
| TRG | | | | $\underset{\text { RES }}{\text { TRG }} 01.30$

Set to 1 hour 30 min .

00	100 perates			smo	
01	11 Stops				
O2	mo.	T1			Fan 1 operates
				тто	Startup time offset time
04			T0	Q1	Fan 2 operates
${ }^{05}$		T2		TT1	Operation time
${ }^{06}$		${ }_{T} 1$		TT2	Stop time
07					
When the oper--------------------------					
pressed, fan 1 starts and 30					
seconds later fan 2 starts.					
The fans repeat a cycle of 1					
hour operating, 1 hour 30					
minutes stopped.					

Application of Bit Logic, Timer Functions, and Counter Functions

■ Example Program

00	B6 Starts test				Performing test
01					
	B 7 Stops			$\begin{aligned} & \text { RCo } \\ & \text { RMO } \end{aligned}$	Counter reset
2					
03	Co Counter			TTO	
04					
05	$\begin{array}{ll} \\ \hline \text { In } & \text { lest } \\ \text { To o } \\ \hline \end{array}$				ON time
				TT1	OFF time
06					Counter
07			0 ON time		
08				Q0	Output

[^0]Parameter Settings TO, Output ON Time

Set to 3 minutes.
C0, Number of Times Output Turns ON

Set to 100 times.

The ZEN can be used to circulate carbon dioxide or warm air. Two circulation fans can be operated at regular intervals. Startup current can also be reduced by staggering operation of the two fans.

Easier small-scale automatic control. That is what the ZEN from OMRON provides. The ZEN can be used almost as easily as wiring materials. The ZEN enables quick automation of small machines or facilities. Add to this the LCD screen and 8 buttons on the front panel for easy ladder program input. You want a more compact control panel or
reduced assembly or wiring? AC inputs, easier circuit design, or multiple-timer control? The OMRON ZEN gives you these, and more, to fill all your automation requirements. Increase system convenience and added value using the automation excellence provided by the ZEN.

Factories (Jigs, Operator Error Prevention, Small Equipment)

Preventing Assembly Omissions and Other Mistakes

If the part required for assembly does not pass through the sensor, the screw tool will not be supplied with air to prevent mistakes.

Application of Bit Logic and Timer Functions

■ Example Program

Energy Conservation and Automation of Building Facilities

An escalator can operate continuously between specified days and times. It can also be set to conserve energy by operating outside those times only when a person approaches the escalator.

Application of Bit Logic, Timer Functions, and Weekly Timers

Times for 3 minutes after detecting person.

Two weekly timers are used to operate the escalator between 7:00 and 10:00 am and 5:00 and 10:00 pm on weekdays.
Outside those times, the escalator uses the OFF-delay timer to operate for 3 minutes after a person has been detected.

Parameter Settings
Weekly Timer @0
(Mon to Fri: 7:00 to 10:00)

Weekly Timer @1 (Mon to Fri: 17:00 to 22:00)
@1 MO-FR A
$\begin{array}{cc:c}\text { ON } 17: 00 \\ \text { RES OFF } 22 & 2 & 0\end{array}$
OFF-delay Timer TO

Lighting Pattern Control

Set the required light patterns and change between patterns with the flick of a switch to save energy by improving lighting efficiency.

Application of Bit Logic

- Example Program

Switch 1 (IO) turned ON, all lights turn ON.
Switch 2 (11) turned ON, light groups 1 and 3 turn ON.
Switch 3 (I2) turned ON, light groups 1 and 2 turn ON.
Switch 4 (I3) turned ON, all lights turn OFF.

The Main Features of the Lightweight and Easy-to-use ZEN

Easy Programming*

The LCD screen comes with 8 operation buttons on the front panel to enable programming in ladder view format. The LCD screen also has a backlight, making it easier to see when the ZEN is used in dark locations.
*For LCD-type CPU Units only.

Hold Functions for Peace of Mind

The ZEN has holding timers and holding bits to give peace of mind against unexpected power failures. These functions hold the previous status so that operation can continue with the same status after power has been restored. You can also mount a Battery Unit (optional) to back up the calendar and clock functions for 10 years or more. Ladder programs and parameter settings can be backed up to the CPU Unit's internal EEPROM, ensuring no data will be lost even if a Battery Unit is not installed.

Operations Determined after Wiring

Hardware relays or timers can normally be selected only after operations have been decided. The ZEN is different. You can wire the ZEN first and then carefully consider operating details later. This makes programming and maintenance after wiring a simple matter.

Flexible Expansion

The ZEN can be used effectively for lighting and other applications requiring many output points. Expansion I/O Units can be added easily if there are not enough I/O points. The compact ZEN takes up little space.

Memory Cassettes

Optional Memory Cassettes have a wide range of uses programs can be easily saved or downloaded, or copied to other ZEN.

Many Other Functions

- Standard Functions on All CPU Units

- Two types of power supply specifications: 100 to 240 VAC or 24 VDC
- Input filters to prevent noise-related malfunctions
- Analog inputs
- Outputs have a large switching capacity (8 A at 250 VAC).
- Up to 44 I/O points if Expansion I/O Units added.
- Password protection.
- Conforms to EC Directives. Scheduled for conformance to UL/CSA in the future.
- Programming using ZEN Support Software on Windows 95, 98, 2000, ME, XP, or NT 4.0 Service Pack 3

- Functions Unique to LCD-type CPU Units

- Displays in 6 languages (Japanese, English, German, French, Spanish, and Italian)
- Calendar and clock functions.
- Display user-set messages or converted values.

Zen Provides a Broad Selection of 10-point to 20-point Models

■CPU Units with 10 I/O Points

- LCD Type (with liquid crystal display)

ZEN-10C1AR-A-V1 (AC type, relay outputs) ZEN-10C1DR-D-V1 (DC type, relay outputs) ZEN-10C1DT-D-V1 (DC type, transistor outputs)

- LED Type (without liquid crystal display)

ZEN-10C2AR-A-V1 (AC type, relay outputs) ZEN-10C2DR-D-V1 (DC type, relay outputs) ZEN-10C2DT-D-V1 (DC type, transistor outputs)

Expansion I/O Units

ZEN-8EAR (4 AC inputs, 4 relay outputs) ZEN-8EDR (4 DC inputs, 4 relay outputs) ZEN-8EDT (4 DC inputs, 4 transistor outputs) ZEN-4EA (4 AC inputs) ZEN-4ED (4 DC inputs) ZEN-4ER (4 relay outputs)

CPU Units with 20 I/O Points

- LCD Type (with liquid crystal display)

ZEN-20C1AR-A-V1 (AC type, relay outputs)
ZEN-20C1DR-D-V1 (DC type, relay outputs)
ZEN-20C1DT-D-V1 (DC type, transistor outputs)

- LED Type (without liquid crystal display)

ZEN-20C2AR-A-V1 (AC type, relay outputs)
ZEN-20C2DR-D-V1 (DC type, relay outputs)
ZEN-20C2DT-D-V1 (DC type, transistor outputs)

■Twice the Timers and Counters (V1 CPU Units Only)

	Pre-V1 Units	V1 Units
Timers (T)	8 points	16 points
Holding timers (\#)	4 points	8 points
Counters (C)	8 points	16 points
Weekly timers $(@)$	8 points	16 points
Calendar timers $(*)$	8 points	16 points
Displays (D)	8 points	16 points

The More You Get to Know It, the Better It Is — The Amazing ZEN

■CPU Units and Expansion I/O Units

Name	Type	Model number	No. of I/O points	Power supply voltage		Inputs		Outputs	LCD and buttons	Calendar and clock	Analog input
CPU Units	LCD	ZEN-10C1AR-A-V1	10	100 to 240 VAC	6	100 to 240 VAC	4	Relays	Yes	Yes	No
	LED	ZEN-10C2AR-A-V1							No	No	No
	LCD	ZEN-10C1DR-D-V1		24 VDC	6	24 VDC	4	Relays	Yes	Yes	Yes
	LED	ZEN-10C2DR-D-V1							No	No	Yes
	LCD	ZEN-10C1DT-D-V1		24 VDC	6	24 VDC	4	Transistors	Yes	Yes	Yes
	LED	ZEN-10C2DT-D-V1							No	No	Yes
	LCD	ZEN-20C1AR-A-V1	20	100 to 240 VAC	12	100 to 240 VAC	8	Relays	Yes	Yes	No
	LED	ZEN-20C2AR-A-V1							No	No	No
	LCD	ZEN-20C1DR-D-V1		24 VDC	12	24 VDC	8	Relays	Yes	Yes	Yes
	LED	ZEN-20C2DR-D-V1							No	No	Yes
	LCD	ZEN-20C1DT-D-V1		24 VDC	12	24 VDC	8	Transistors	Yes	Yes	Yes
	LED	ZEN-20C2DT-D-V1							No	No	Yes
Expansion I/O Units		ZEN-8EAR	8	-	4	100 to 240 VAC	4	Relays	-	-	-
		ZEN-8EDR		-	4	24 VDC	4	Relays	-	-	-
		ZEN-8EDT		-	4	24 VDC	4	Transistors	-	-	-
		ZEN-4EA	4	-	4	100 to 240 VAC	-	-	-	-	-
		ZEN-4ED		-	4	24 VDC	-	-	-	-	-
		ZEN-4ER		-	-	-	4	Relays	-	-	-

Optional Units

Name	Model number	Specifications	Remarks		
Memory Cassette	ZEN-ME01	EEPROM	Enables programs and parameter settings to be saved or copied to another ZEN (See note.)		
				LCD Type	LED Type
			Transfer from ZEN to Memory Cassette	Supported	Not supported
			Transfer from Memory Cassette to ZEN	Supported	Supported (Automatic transfer when power turned ON)
			Memory Cassette initialization	Supported	Not supported
Connecting Cable	ZEN-CIF01	2-m RS-232C (9-pin D-sub connector)	-		
Battery Unit	ZEN-BAT01	10 year min. battery life (at $25^{\circ} \mathrm{C}$)	The program and parameter settings are backed up in the CPU Unit's internal EEPROM and will not be lost. Use the Battery Unit to prevent loss of calendar/clock, holding bits, holding timer present values, counter present values, and other data when the power is turned OFF for an extended time (for 2 days or more at $25^{\circ} \mathrm{C}$). This data is otherwise backed up using RAM and a super-capacitor.		
ZEN Support Software	ZEN-SOFT01-V3	Runs on Windows 95, 98, 2000, ME, XP, or NT 4.0.	Specifically designed for the ZEN (CD-ROM).		

Programming Is Even Easier with ZEN Support Software

ZEN Support Software Functions

- Creating Ladder Programs

ZEN ladder programs can be created with ease.

Note: The Edit Input Dialog Box is displayed when an input bit is inserted
Timer, counter, and other parameter settings are also set in the Edit Input Dialog Box. They cannot be set in the Edit Output Dialog Box

- Monitoring Ladder Programs

The operating status can be monitored from the Support Software by connecting to the ZEN using a Connecting Cable (ZEN-CIF01).

- The Support Software can also be used to save files and edit comments.

Simulating Ladder Programs

The simulation function makes it possible to check whether correct operation is performed without connecting to the ZEN.

Note: The simulation function is supported by ZEN-SOFT01-V2 and later versions.

-Printing Ladder Programs

Ladder programs and I/O comments, as well as timer, counter and other parameter settings can be printed.

ZEN Support Software and CPU Unit Versions

Use ZEN-SOFT01-V3 ZEN Support Software Ver. 3.0 or later when using CPU Units with 20 I/O points.

CPU Unit	ZEN Support Software	SOFT01 (Ver. 1.0)	SOFT01-V2 (Ver. 2.0)	SOFT01-V3 (Ver. 3.0)	
	Pre-V1 Unit		\bigcirc	\bigcirc	0
V1 Unit	10 I/O points	Δ	Δ	\bigcirc	
	20 I/O points	\times	\times	\bigcirc	

[^1]ZEN-SOFT01 and ZEN-SOFT-V2 ZEN Support Software (versions 1.0 and 2.0) can be used with ZEN-10C $\square \square-\mathrm{V} 1$ CPU Units (V1 Units with 10 I/O points) but only half of each of the timer, holding timer, counter, weekly timer, calendar timer, and display function areas can be used (i.e., the Pre-V1 bit range).

Flexible Control with a Wide Variety of Instructions

Programs can consist of up to 96 lines with 3 program inputs and 1 output per line.

Name	Symbol	Bit addresses	No. of points	Operation	Details
Input bits	1	10 to lb*	12	Reflect the ON/OFF status of the input devices connected to the input terminals on the CPU Unit.	
Expansion input bits	X	X0 to Xb	12	Reflect the ON/OFF status of the input devices connected to the input terminals on the Expansion I/O Units.	
Output bits	Q	Q0 to Q7*	8	The ON/OFF status of these output bits is used to control the output devices connected to the output terminals on the CPU Unit.	1
Expansion output bits	Y	Y0 to Yb	12	The ON/OFF status of these output bits is used to control the output devices connected to the output terminals on the Expansion I/O Units.	
Work bits	M	M0 to Mf	16	Work bits can be used only within the ZEN program. I/Os for external devices cannot be made (i.e., all I/O is internal).	
Holding bits	H	HO to Hf	16	Used the same as the work bits. However, if the power to the ZEN is turned OFF, these bits also maintain the previous ON/OFF status.	
Timers	T	T0 to Tf	16	Functions are selected Time units can be selected from the following: from the screen $0.01-\mathrm{s}$ unit: 0.01 to 99.99 s when parameter $\mathrm{min} / \mathrm{s}$ unit: 00 min 01 s to 99 min 59 s settings are made. h / s unit: 00 h 01 min to 99 h 59 min	2
Holding timers	\#	\#0 to \#7	8	Hold the present value being counted even if the trigger input or power supply is turned OFF and continue timing when the trigger input or power is restored.	
Counters	C	C 0 to Cf	16	Reversible counters that can be incremented and decremented.	3
Weekly timers	@	@0 to @f	16	Turn ON and OFF during specified times on specified days.	4
Calendar timers	*	*0 to *f	16	Turn ON and OFF between specified dates.	5
Display bits	D	D0 to Df	16	Display any character string, time, or analog-converted display of timer or counter present values.	6
Analog comparator bits	A	A0 to A3	4	Used as program input conditions to output analog comparator comparison results. These bits can be used only for 24-VDC input CPU Units.	7
Timer/counter comparator bits	P	P0 to Pf	16	Compare the present values of timers (T), holding timers (\#), and counters (C). Comparison can be made between the same two counters or timers, or with constants.	8
Button input bits	B	B0 to B7	8	Used as program input conditions and turn ON when operation keys are pressed in RUN Mode. These input bits can be used only with LCD-type CPU Units.	9

* CPU Units with 10 I/O points have 6 input bits (10 to 15) and 4 output bits (Q0 to Q3).

1 Additional Bit Output Functions

[: Normal
Q0
Q0 will turn ON or OFF depending on the ON/OFF status of the execution condition IO.

2 Using Timers and Holding Timers

Available timers	Holding timers (\#0 to \#7)	Timers (T0 to Tf)			
Timer type	X	X	\square	0	F
	ON-delay timer only	ON-delay timer	OFF-delay timer	One-shot pulse timer	Flashing pulse timer
Operation	Turns ON after set delay after the trigger input turns ON.	Turns ON after set delay after the trigger input turns ON.	Stays ON while the trigger input is ON and turns OFF after a set delay after the trigger input has turned OFF.	Turns ON for a set period after the trigger input turns ON and regardless of how long the trigger input remains ON .	Repeatedly turns ON and OFF in a set cycle while the switch is ON.
Trigger input Reset input Setting Present value Timer input condition					
Main applications	To continue operation after momentary power loss or power interruptions.		Useful for OFF delay circuits for lights or fans.	Useful for set operations where operation is always required during a regular period only.	Useful for flashing emergency lights or sounding buzzers as the output for an alarm circuit.
	When delayed operation or a time lag is required.				

3 Counter Operation

The counter bit turns ON when the counter value (present value) reaches the set value (present value \geq set value). The count returns to 0 and the counter bit turns OFF when the reset input turns ON. Count inputs are not accepted while the reset input is turned ON. The counter present value and counter bit (ON/OFF) are held even if the operating mode is changed or the power supply is interrupted.

4 Weekly Timer Operation

5 Calendar Timer Operation

7 Analog Comparator Operation Example

8 Timer/Counter Comparator Operations

6 Display Settings

9 Specifications for Button Input Bits

Units with AC Power Supply

- CPU Units with 10 I/O Points (V1 and Pre-V1 Units)

- CPU Units with 20 I/O Points

- Expansion I/O Units

Units with DC Power Supply

- CPU Units with 10 I/O Points
- For connections to negative (-) common (V1 Units)

Note: Provide power to the COM and power supply terminals at the same time.

■ CPU Units with 20 I/O points

- For connections to negative (-) common

Note: Provide power to the COM and power supply terminals at the same time.

- Input terminal 14//5 analog input device connections (input range: 0 to 10 V)

Note: Always connect analog input devices to the negative (-) COM terminal.

- For connections to positive (+) common (V1 Units)
- Input terminal la/lb analog input device connections (input range: 0 to 10 V)

Note: Always connect analog input devices to the negative (-) COM terminal.

Note: I4/I5 cannot be used as analog input terminals with a positive (+) common terminal connection.

- For connections to positive (+) common

Note 1. la/lb cannot be used as analog input terminals with a positive (+) common terminal connection.
2. Provide power to the COM and power supply terminals at the same time.

- Expansion I/O Units
- Expansion I/O Units (DC input type)

Note: Expansion I/O Units can be connected to either the positive
$(+)$ or negative (-) common terminal.

■ Output Circuit Wiring

- Units with Relay Outputs

All four relay output circuits in both CPU Units with 10 I/O points and Expansion I/O Units have independent contacts. CPU Units with 20 I/O points have 4 independent contacts (Q0 to Q3) and the remaining four (Q4 to Q7) have 2 points/common. There are no restrictions for polarity.

- Transistor Output Type

All four transistor output circuits in both CPU Units with 10 I/O points and Expansion I/O Units have independent contacts. CPU Units with 20 I/O points have 4 independent contacts (Q0 to Q3) and the remaining four (Q4 to Q7) have 2 points/common. The terminals have polarity, but the power supply and load connections can be swapped.

Input Specifications - CPU Unit

- AC Inputs (Not Isolated)

Item	Specifications	Circuit drawing			
Input voltage	100 to 240 VAC +10\%, -15\%, 50/60 Hz	$100 \text { to } 240 \text { VAC }$			
Input impedance	$680 \mathrm{k} \Omega$				
Input current	$0.15 \mathrm{~mA} / 100 \mathrm{VAC}, 0.35 \mathrm{~mA} / 240$ VAC				
ON voltage	80 VAC min.				
OFF voltage	25 VAC max.				
ON response time	50 ms or 70 ms at 100 VAC (See note.)				
OFF response time	100 ms or 120 ms at 240 VAC (See note.)				

Note: Can be selected using the input filter settings.

- DC Inputs I0 to I3 (IO to I9 for Units with 20 I/O points), V1 Units (Photocoupler Isolated)

Item	Specifications	Circuit drawing			
Input voltage	24 VDC +10\%, -15\%	$\begin{gathered} 24 \mathrm{VDC} \\ - \\ \frac{1}{1} \\ 1-\square \\ -1 \end{gathered}$			
Input impedance	$5 \mathrm{k} \Omega$				
Input current	5 mA (typ.)				
ON voltage	16.0 VDC min.				
OFF voltage	5.0 VDC max.				
ON response time	15 ms or 50 ms (See note.)				
OFF response time					

Note: Can be selected using the input filter settings

- DC Inputs I14 and I15 (la and Ib for Units with 20 I/O points), V1 Units (Not Isolated)

Note: Can be selected using the input filter settings

- Expansion I/O Unit
- AC Inputs (Photocoupler Isolated)

Item	Specifications	Circuit drawing			
Input voltage	100 to 240 VAC +10\%, $-15 \%, 50 / 60 \mathrm{~Hz}$	100 to 240 VAC		-	
Input impedance	$83 \mathrm{k} \Omega$				
Input current	$1.2 \mathrm{~mA} / 100 \mathrm{VAC}, 2.9 \mathrm{~mA} / 240 \mathrm{VAC}$				
ON voltage	80 VAC min.			Internal	
OFF voltage	25 VAC max.				
ON response time	50 ms or 70 ms at 100 VAC (See note.)				
OFF response time	100 ms or 120 ms at 240 VAC (See note.)				

Note: Can be selected using the input filter settings.

- DC Inputs (Photocoupler Isolated)

Item	Specifications	Circuit drawing		
Input voltage	24 VDC +10\%, -15\%			
Input impedance	$4.7 \mathrm{k} \Omega$			
Input current	5 mA (typ.)			
ON voltage	16.0 VDC min.			
OFF voltage	5.0 VDC max.			
ON response time	15 ms or 50 ms (See note.)			
OFF response time				

Note: Can be selected using the input filter settings.

■Output Specifications (CPU Unit/Expansion I/O Unit)

- Relay Output Type

Item		Specifications	Circuit drawing			
Maximum switching capacity		250 VAC/8 A (Resistive load: $\cos \phi=1$) 24 VDC/5 A (Resistive load)				
Minimum switching capacity		$5 \mathrm{VDC} / 10 \mathrm{~mA}$ (Resistive load)				
Relay life	Electrical	Resistive load: 50,000 times $(\cos \phi=1)$ Inductive load: 50,000 times ($\cos \phi=0.4$)	Internal circuit		nits with 20 I/O points only	
	Mechanical	10 million times		-		
ON response time		15 ms max.				
OFF response time		5 ms max.				

The life, under the worst conditions, of the output contacts used in ZEN relay outputs is given in the above table. Guidelines for the normal life of the relays are shown in the diagram on the right.

- Transistor Output Type

■General Specifications

Item	Specification	
	ZEN- \square OC \square AR-A-V1	ZEN- $\square 0 \mathrm{C} \square \mathrm{D} \square$-D-V1
Power supply voltage	100 to 240 VAC	24 VDC
Rated power supply voltage	85 to 264 VAC	20.4 to 26.4 VDC
Power consumption	30 VA max. (With 3 Expansion Units connected)	6.5 W max. (With 3 Expansion Units connected)
Inrush current	40 A max.	10 A max.
Insulation resistance	Between power supply AC external and input terminals, and relay output terminals: $20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)	
Dielectric strength	Between power supply AC external and input terminals, and relay output terminals: $2,300 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 minute with leakage current of 1 mA max.	
Noise immunity	Conforms to IEC61000-4-4, 2 kV (power supply line)	
Vibration resistance	Conforms to JIS C0040, 10 to 57 Hz , amplitude 0.075 mm , 57 to $1,500 \mathrm{~Hz}$, acceleration: $9.8 \mathrm{~m} / \mathrm{s}^{2}$ 80 minutes in X, Y, and Z directions (sweep time: 8 min (No. sweeps: $10=80 \mathrm{~min}$.$))$	
Shock resistance	Conforms to JIS C0041. $147 \mathrm{~m} / \mathrm{s}^{2}, 3$ times in X, Y, and Z directions.	
Ambient temperature	LCD-type CPU Unit (operation panel and calendar/clock function): 0 to $55^{\circ} \mathrm{C}$ LED-type CPU Unit (no operation panel or calendar/clock function): -25 to $55^{\circ} \mathrm{C}$	
Ambient humidity	10\% to 90\% (with no condensation)	
Ambient conditions	No corrosive gases	
Ambient storage temperature	LCD-type CPU Unit (operation panel and calendar/clock function): -20 to $75^{\circ} \mathrm{C}$ LED-type CPU Unit (no operation panel or calendar/clock function): -40 to $75^{\circ} \mathrm{C}$	

■ Performance Specifications

Item	Specification
Control method	Stored program control
I/O control method	Cyclic scan
Programming language	Ladder diagram
Program capacity	96 lines (3 input conditions and 1 output per line)
Max. No. of control I/O points	44 points CPU Unit: 12 inputs and 8 outputs Expansion I/O Units: 4 inputs and 4 outputs each, up to 3 Units.
LCD display	12 characters $\times 4$ lines, with backlight (LCD-type CPU Unit only)
Operation keys	8 (4 cursor keys and 4 operation keys) (LCD-type CPU Unit only)
Memory backup	- Internal EEPROM (or optional Memory Cassette) - User programs - Parameter settings - Internal RAM, super-capacitor hold (or optional Battery Unit) - Holding bits - Holding timer and counter values - Super capacitor hold (or optional Battery Unit) - Calendar and clock
Super-capacitor holding time	2 days min. ($25^{\circ} \mathrm{C}$)
Battery life (ZEN-BAT01)	10 years min. ($25^{\circ} \mathrm{C}$)
Time function (RTC)	ZEN- \square 0C1 $\square \square$ - \square only, accuracy: 1 to $2 \mathrm{~min} / \mathrm{month}\left(\right.$ at $25^{\circ} \mathrm{C}$)
Terminal block	Solid-line terminal block (Use solid lines or fine wiring terminals.)
Power supply holding time	ZEN- $\square 0 C \square$ AR-A: 10 ms min. ZEN- $\square 0 C \square D \square$-D: 2 ms min.
Weight	300 g max.

■ Dimensions (Unit: mm)

- CPU Units with 10 I/O Points (LCD/LED Types)

- With Battery Unit Mounted

- CPU Units with 20 I/O Points (LCD/LED Types)

- With Battery Unit Mounted

- Expansion I/O Units (4 inputs, 4 outputs, 8 I/O)

- Unit Mounting Hole (Same for all Units)

Precautions when Selecting ZEN Programmable Relays

■ Differences between V1 and Pre－V1 CPU Units

－Data Area Comparisons

CPU Unit	V1 CPU Units		Pre－V1 CPU Units
	ZEN－10C口ロロ－■－V1	ZEN－20C $\square \square \square-\square$－V1	ZEN－10C $\square \square \square-\square$
CPU Unit input bits	10 to 15 （6 points）	10 to lb（12 points）	10 to 5b（6 points）
CPU Unit output bits	Q0 to Q3（4 points）	Q0 to Q7（8 points）	Q0 to Q3（4 points）
Timers	T0 to Tf（16 points）		T0 to T7（8 points）
Holding timers	\＃0 to \＃7（8 points）		\＃0 to \＃3（4 points）
Counters	C 0 to Cf（16 points）		C 0 to C7（8 points）
Weekly timers	＠ 0 to＠f（16 points）		＠0 to＠ 7 （8 points）
Calendar timers	＊0 to＊f（16 points）		＊0 to＊f（8 points）
Display bits	D0 to Df（16 points）		D0 to D7（8 points）
Work bits	M0 to Mf（16 points）		
Holding bits	H0 to Hf（16 points）		
Expansion I／O Unit input bits	$\mathrm{X0}$ to Xb （12 points）		
Expansion I／O Unit output bits	Y0 to Yb（12 points）		
Analog comparator bits	A0 to A3（4 points）		
Comparator bits	P0 to Pf（16 points）		

－Password Function（LCD－type CPU Units Only）

In addition to the password－protected items in existing models， password protection is also provided for the Program All Clear operation in the V1 CPU Units．

Items Protected by Password（0000 to 9999）

V1 Units	Pre－V1 Units
Editing ladder program	Editing ladder program
Program all clear	Ladder monitoring
Ladder monitoring	Changing／clearing password
Changing／clearing password	Changing backlight OFF time
Changing backlight OFF time	Setting input filter
Setting input filter	Setting node number
Setting node number	

－Input Wiring（DC－type CPU Units Only）

V1 CPU Units

With V1 CPU Units，you can wire to either the negative（－）common or positive （＋）common terminal．
－Negative（－）COM Wiring
－Positive（＋）COM Wiring

Note： 14 and 15 cannot be used as analog input terminals．

Pre－V1 CPU Units

With Pre－V1 CPU Units，the input circuit common terminal is connected internally to the negative（－）side of the power supply circuit．

$■$ Support Software and CPU Unit Combinations

Support Software Version	ZEN－SOFT01 Ver． 1.00	ZEN－SOFT01－V2 Ver． 2.00	ZEN－SOFT01－V3 Ver．		
	Pre－V1 Units		Can be used．	Can be used．	Can be used．
V1 Units	10 I／O points	Can be used，with restrictions（See note．）	Can be used，with restrictions（See note．）	Can be used．	
	20 I／O points	Cannot be used．	Cannot be used．	Can be used．	

Note：Only half of each of the timer，holding timer，counter，weekly timer，calendar timer，and display function areas can be used（i．e．，the Pre－V1 bit range）．

■ Difference between ZEN Programmable Relays and PLC Ladder Program Execution
－ZEN Programmable Relays

ZEN executes the entire ladder program（up to 96 lines）from the first to last line at one time．Each row is executed in order from left to right starting from the left bus bar．

The ON／OFF status produced by an output contact will not be used as the input contact status in the same cycle，but it can be used in the next cycle．

PLCs execute ladder programs one rung（circuit） at a time，starting with the top rung and executing it in order from the left．When the END instruction is reached，the program is executed again from the first rung．

[^2]■ Models

Model	Unit name	No. of I/O points	Power supply				Outputs	LCD	Calendar/ clock
ZEN-10C1AR-A-V1	CPU Unit	10	AC	6	AC	4	Relay	Yes	Yes
ZEN-10C2AR-A-V1		10	AC	6	AC	4	Relay	No	No
ZEN-10C1DR-D-V1		10	DC	6	DC	4	Relay	Yes	Yes
ZEN-10C2DR-D-V1		10	DC	6	DC	4	Relay	No	No
ZEN-10C1DT-D-V1		10	DC	6	DC	4	Transistor	Yes	Yes
ZEN-10C2DT-D-V1		10	DC	6	DC	4	Transistor	No	No
ZEN-20C1AR-A-V1		20	AC	12	AC	8	Relay	Yes	Yes
ZEN-20C2AR-A-V1		20	AC	12	AC	8	Relay	No	No
ZEN-20C1DR-D-V1		20	DC	12	DC	8	Relay	Yes	Yes
ZEN-20C2DR-D-V1		20	DC	12	DC	8	Relay	No	No
ZEN-20C1DT-D-V1		20	DC	12	DC	8	Transistor	Yes	Yes
ZEN-20C2DT-D-V1		20	DC	12	DC	8	Transistor	No	No
ZEN-8EAR	Expansion I/O Unit	8	-	4	AC	4	Relay	-	-
ZEN-8EDR		8	-	4	DC	4	Relay	-	-
ZEN-8EDT		8	-	4	DC	4	Transistor	-	-
ZEN-4EA		4	-	4	AC	-	-	-	-
ZEN-4ED		4	-	4	DC	-	-	-	-
ZEN-4ER		4	-	-	-	4	Relay	-	-
ZEN-ME01	Memory Cassette								
ZEN-CIF01	Connecting Cable								
ZEN-BAT01	Battery Unit								
ZEN-SOFT01-V3	ZEN Support Software (CD-ROM)								
ZEN-KIT01-EV3	Set containing CPU Unit (ZEN-10C1AR-A-V1), Support Software Connecting Cable, ZEN Support Software, and manual.								
ZEN-KIT02-EV3	Set containing CPU Unit (ZEN-10C1DR-D-V1), Support Software Connecting Cable, ZEN Support Software, and manual.								

Note: Do not use this document to operate the Unit.

OMRON Corporation Regional Headquarters
Industrial Automation Company omRon EUROPE b.V.
Industrial Devices and
Components Division H.Q.
Industrial Control Components Department
Shiokoji Horikawa, Shimogyo-ku,
Kyoto, 600-8530 Japan
Tel:(81)75-344-7119
Fax: (81)75-344-7149
OMRON ELECTRONICS LLC

OMRON ASIA PACIFIC PTE. LTD.
239920 Singapore

Wegalaan 67-69, NL-2132 JD Hoofddorp The Netherlands
Tel:(31)2356-81-300/Fax:(31)2356-81-388
1 East Commerce Drive, Schaumburg, IL 60173 U.S.A.
Tel:(1)847-843-7900/Fax:(1)847-843-8568
83 Clemenceau Avenue, \#11-01, UE Square,
Tel:(65)6835-3011/Fax:(65)6835-2711
OMRON CHINA CO., LTD, BEIJING OFFICE
Room 1028, Office Building, Beijing Capital Times Square, No. 88 West Chang'an Road, Beijing, 100031 China Tel: (86)10-8391-3005/Fax: (86)10-8391-3688

Authorized Distributor:

[^0]: When the operation switch is pressed, the device repeats a sequence of 2-minutes-ON, 3-minutes-OFF for a total of 100 times before automatically stopping.

[^1]: \bigcirc : Supported \triangle : Supported (with limitations) \times : Not supported

[^2]: When the following instructions are executed，Q0 turns ON／OFF at the same time as the other bits．

